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ABSTRACT: The coordinates  of the sonic l ine  are der ived by means  of 

Frankl 's  solut ion [1] ,  whi l e  the supersonic part of the j e t  is considered 

by the method of charac ter i s t ics .  The n u m e r i c a l  solut ion has been 
used to c a l c u l a t e  the f a m i l y  of ra refac t ion  waves and a f a m i l y  of noz-  

z les  hav ing  a corner  point  and a cu rv i l inea r  t ransi t ion surface.  These  

ca lcu la t ions  show that ,  when  there  is a corner point,  the  shape of the 
sonic l ine  has hardly any effect  on the ve loc i ty  distr ibution a long the 

symmet ry  axis .  It is also shown that  a pos i t ive  pressure gradient  arises 
on the surface of the nozz l e  beyond the corner  point i f  tha t  point I ies 
upstream from the l i m i t i n g  charac te r i s t i c  of the first f ami ly .  

A comparison is m a d e  with the approx ima te  transonic solut ion [2, 3] 

near  the center  of the nozz le .  We are indebted to G. K. Bunina for 

assis tance with the ca lcu la t ions .  

w Sonic  l ine .  Franld [1] gave  a solut ion for this  type of je t .  The 

shape of the sonic l i ne  and the v e l o c i t y  a t  the wal l  are der ived for a 

p lanar  hoIe whose wal ls  are inc l ined  at an angle  00 = 7r/2 to the x- 

axis, 

The formula  [1] for the function r is 

= - -  O/~ + a0~ ~ + 5 ~ ,  (1.1) 

z n ('~) sin2nO 

6 ~ =  f ~ ( '~ )  " ~ ~ 0 . 3 )  n='l an zn (T.) s i n  ~ n ~ ,  

in which 0 is the inc l ina t ion  of the v e l o c i t y  to the x -ax i s ,  r is the 

square of the rat io  of the ve loc i ty  to the v e l o c i t y  of flow into a vac-  

uum, and r ,  is the va lue  of r at  the sonic point .  

In der iv ing the coef f ic ien ts  of (1.3) from the boundary condit ions,  

grankl  c a l c u l a t e d  only the first four coeff ic ients .  Formula (1.3) is used 

to de te rmine  the coordinates  of the sonic l ine  and the inc l ina t ion  of 

the ve loc i ty  on it .  The values  of ~ are used to de te rmine  the coordi-  

nates of the sonic l i ne  v ia  Chaplyg in ' s  equations and the formuias  for 

passing from the phys ica l  p lane  to the hodograph p lane  [4].  Some 

s imple  steps g ive  
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Formulas a l lowing  one to sum the series of (3_.2) for ~" = % have  

been  used in c a l cu l a t i ng  ~ and 0~/Or ,  n a m e l y  

eni:*' ~ x~ 
r(~) y j - p a -  = ~ _ i ~ _ l  (~>0),  

0 

(1.4) 

in which F ( a )  is the g a m m a  funct ion,  and also asympto t i c  formulas  

for zh0") for r = % [1] :  

n �9 z=(%) 

i f  2 ~ 
= - -  - 7  \ ~ /  (Cr + Cln-1 4- Cpn -% 4- Can-'/'), 0.5) 

in which C O = - 2 . 4 4 4 ,  C 1 = 1.2305, C 2 = - 0 . 6 4 7 8 ,  a n d C  3 = 0.23779, 

and y is the ra t io  of the speci f ic  heats .  The results for ~ and 6 r  

are as follows: 
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An M-20 computer was used to ca lcula te  the coordinates of the 

sonic l ine,  the Inclination of the veloci ty  at that line, and ~ and 

2 r . d ~ / d r  for a planar hole with 00 = 7r/2 (see table). 

A quantity of interest is dk/dx, in which )v is the veloci ty  coeffi- 

cient, at the center of the nozzle.  The relations between the physical 
plane and the hodograph plane [4] give 

1 
1 ( l - -  7 - - 1  

d.~. 2T ]/'}- ~ ' C )  ( t - - ' Q  . - I  0 4  d '~,  

+ 2a0z, 
n = l  

~v 

n=l 
Here 

i "r + i \ 0 ,  

because the series for o diverges. Simple steps give 

FI ~2-1 ,, 0 , ]  7~{-I ~20:,) 

The asymptotic expression of (1.5) for Zn(E: ,) is used with the 

Integral representation of the Riemann zeta function and the series 

representation of that function [5] to give 

d?~ Cwj. [~ (l)]2 
d ~  = 3a0('r ~ - i )  V ' ~ +  l / ~ - i  0.5446, 

l 

' 9 ~-i 

in which 2y. is the width of the hole. The radius of curvature of the 

streamline at the point of intersection with the sonic line can be deter- 

mined from 

cos 20 (l + tg 20) % dr . -  2% d~ 
24 = dO/dz dO = ] /6  ~ - ~ ' ~  cos O. 

w Supersonic part. This flow was calculated by the method of 

characteriStiCS [6] with the M-20 computer. This gave the l imi t ing 

characteristics C$ and CO- of the first and second families,  the line 

0 = 0, and ten intermediate  lines. Figure i shows the sonic line (curve 
1), C ~_ (curve 2), C~ (curve 3), 0 = 0 (curve 4), and the rarefaction 

lines. The streamlines show the relat ive radii of curvature R ~ at 

the sonic point (this relat ive radius is the ratio of the radius of cur- 

vature to the radius of the minimum cross-section for that line), as 

well as the flow corresponding to that l ine and referred to 0.5 p . a .  (at 

= 3.864). 
The flow parameters change monotonically along CO-, namely M 

and the modulus of the inclination of the veloci ty  increase with y. M 

and that inclination change similarly on all  characteristics of the sec- 

ond fami ly  that start from the nodal point and run to the sonic line up 
the flow from C~. The characteristics of the second family that start 

from the nodal point and run down the flow from C ~_ do not have mono- 

tonic variat ion in M and the incl inat ion (Fig. 2); M decreases from 

the nodal point to the point of intersection with the C+ characteristic,  

but increases from the point of intersection to the axis, while the angle 

increases from the corner point to the point of intersection but there- 
after falls to zero, In Fig. 2, B =(M z -- 1) r / a ,  g = t a n 0 .  

This behavior is readily explained from the conditions of corn 

pat ibi l i ty  on the characteristics. Let v iM)  be the Prandtl-Meyer num- 

ber; then (Fig. 1) on ADN 

(M) + 0 = v (MN) ,  

at A 

(MA)--04 . = I / 2  a ,  or v ( M A ) = : I / 2  ~(M:v) + ~/~ a, 

on C$ 

( i t )  - -  0 = o, 

at D (intersection of ADN and C+) 

v ( M D )  = 1/2v (MN). 

These relationships imply that 

M D < M N ,  M A > M D . 

it can be shown that M decreases monotonically on part AD of 

ADN, and Increases monotonical ly on part DN. From 

(M) + 0 = v (MN), 

it follows that 0 is also not monotonic on ADN. 

w Comparison with approximate solution. The approximate 
equation for transonic flow in the planar case is [2] 

- -  (7 + t) (Oxxq~x + @~y -- 0. 

In deriving this i t  has been assumed that the speed of the gas is 

close to the speed of sound, while the angle between the veloci ty vec- 

tor and the x-axis  is small. The exact  solution to this equation is the 

first term of Meyer's series near the center of the nozzle and takes 

the form 

@ =  t /2a  x 2 + r l a  (7+ f) a 2 xY 2 + 1 1 ~ 4  ( ? +  t) 2cz~y 4, 

in which a = dw/dx at the center. This gives us the veloci ty  com- 

ponents u and v paral le l  and perpendicular to the axis as 

u /a*  = l + a ~  + l12 (7 § t )  a2y  2 + . . . .  

v/a.= (7 + t) a2xy + 1/o (y + 1) 2 ~3y3 + . . . .  

These formulas allow us to calcula te  the shape of the sonic line, 

t he I ine ,  0 =0 ,  and of C ~ _ and C+. The first three are 

z--~ --1/2 (~-~- 1) ay  2, x =  z/6 (~] @ t) ay 2, I)= O, 

while the latter two are 

x = --V4 (y + 1) czy2, x = 1/2 (y + l) a y e .  

Figures 3 and 4 give some results from comparison of the exact 

and approximate solutions. Figure 3 gives the coordinates of the sonic 

line, the l ine 0 = 0, and also C~ and C~ while Fig. 4 shows 0 as a 

function of y. in these figures, curve 1 corresponds to the approximate 

solution, while curve 2 corresponds to the present numerical  solution, 

The discrepancies are only 10-20% up to y ~ 2 for the coordinates of 

the sonic line, the line 0 = 0, and also C$ and C~ but the 0 for y 

_< 0.9 (which corresponds to R ~ > 4) and the modulus of the velocity on 

the sonic line and the l ine 0 = 0 differ by a factor 2 (Fig. 4). The ap- 

proximate formulas are therefore unsuitable for flow in nozzles in 

cases of prac t ica l  interest with R ~ _. 4; they are applicable only when 

the flow near the cr i t ica l  section differs only slightly from one-di-  
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mens iona l ,  as was assumed in deducing the app rox ima te  equat ion  for 
the po ten t i a l  of the transonic flow. 

w Curv i l inea r  t r a m t t i o n  and s t r e a m l i n e  point .  Each corner c an  
serve as the contour of a nozz le ,  s tar t ing from the  subsonic region,  t t  

0 ~# ~8 LZ L8 

Fig, 4 

is of interest  to use the t ransonic parts to der ive  the  supersonic par t  

w i th  a corner  point  and wi th  a uni form flow p a r a l l e l  to the axis .  I t  is 

usual  in  c a i c u l a t i n g  the supersonic part of a nozz le  wi th  a corner point  

to assume that  the sonic l i ne  is straight  and that  the v e l o c i t y  on it  is 

p a r a l l e l  to the axis [7] ,  as there  is no exac t  solut ion for transonic 

flow with a curv i l inear  t ransi t ion surface.  Fhen the rarefac t ion  l ines  
ar is ing from flow past the corner point  are ca l cu l a t ed .  A g iven  M is 

assumed, and a c h a r a c t e r i s t i c w i t h  a uniform flow p a r a l l e l  to the axis 

is t aken  to solve the Gurs problem and to define the supersonic part  of 

the nozz le  wi th  a corner point.  In our case, we h a v e  loca ted  the corner 

point  at various points on the l ine  0 = 0, which correspond to s t ream 

l ines  wi th  different  R ~ Rarefact ion waves were ca l cu l a t ed  for these 

various positions. Figure 5 shows the dis t r ibut ion of M along the axis 

of the nozz l e  for various R ~ (x ~ is the ra t io  of the d is tance  from the 

corner  point  to the  radius of the c r i t i c a l  sect ion,  in  which  the corner  

point  l ies).  The va lue  R ~ = 0 corresponds to flow from a planar  hole  

with 0 o = 7r/2, whi le  R ~ = ~ corresponds to flow from a ptanar hole  

wi th  a r ec t i l i nea r  sonic l ine .  It is c l ea r  from Fig. 5 tha t  the a x i a l  
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dis t r ibu t ion  of M and the a c c e l e r a t i o n  on flow past the  corner  point  

are only s l ight ly  dependent  on the shape of the sonic l ine.  The a c c e l -  

erat ion is somewhat  greater  wi th  M > 2 for R ~ = 0. 

These rarefaction waves were used to calculate nozzles with corner 

points having a uniform flow parallel to the axis for M 0 ~ 4, which 

differed in shape of transition line in the transonic part and hence in 

R ~ Figure 6 shows the distribution of M on the wall. A nozzle with a 

curv i l inear  sonic l i ne  has  a pos i t ive  pressure grad ien t  near  the  comer  

point  ( m i n i m u m  in the dis tr ibut ion of M). The pressure grad ien t  de-  

creases as R ~ increases .  There is no pos i t ive  pressure gradient  for a 

nozz l e  wi th  a s traight  sonic l ine .  
This m i n i m u m  in M is r e l a t ed  to the nonmonotonic  behavior  of 

M on the rarefac t ion  waves.  As the charac ter i s t ic  at  the ex i t  from the 

nozzles  is r ec t i l inea r ,  and the pa ramete r s  on i t  are constant ,  a l l  char-  

ac ter is t ics  of the first f a m i l y  are also r ec t i l i nea r  and have  constant  

parameters ,  so the nonmonotonic  pa ramete r  va r i a t ion  on tlie rare-  

f a c t i o n - w a v e  charac te r i s t i cs  is transferred to the nozz l e  contour and 

to a l l  i n t e rmed ia t e  s t reaml ines  ly ing  above the  point  of in tersec t ion  

of the las t  charac te r i s t i c  for the waves wi th  the C+ charac te r i s t i c .  

This  impl ies  tha t  a pos i t ive  grad ien t  w i l l  be  absent in a n o z z l e  wi th  

a corner  point  i f  the  corner  point  i n  the  t ransonic region l i es  down- 
s t ream from point  D in Fig. 1. 

Consider the flow for various R ~ in the transonic part  at  the point  
0 = 0. Ca lcu la t ions  have  been  performed for a nozz le  with a rec t i -  

" / hi 

Fig. 6 

l i nea r  sonic l i ne  at the in le t  and a uniform flow pa ra l l e l  to the axis 

at the ex i t  with M 0 = 4. The ca lcu la t ions  show that  here  a eurv i l inear  

t ransi t ion surface causes the d is t r ibut ion of M near  the corner point to 

vary  wi th  R ~ and that  there  is a pos i t ive  pressure gradient .  However, 

the distributions of M in the rest of the nozz le  are fa i r ly  s imi lar ,  in 

spite of the differences in the transonic part .  
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