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CALCULATION OF A SUPERSONIC JET EMERGING FROM A HOLE WITH PLANAR WALLS
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ABSTRACT: The coordinates of the sonic line are derived by means of
Frankl's solution [1], while the supersonic part of the jet is considered
by the method of characteristics. The numerical solution has been
used to calculate the family of rarefaction waves and a family of noz-
zles having a comer point and a curvilinear transition surface. These
calculations show that, when there is a corner point, the shape of the
sonic line has hardly any effect on the velocity distribution along the
symmetry axis. It is also shown that a positive pressure gradient arises
on the surface of the nozzle beyond the corner point if that point lies
upstrearn from the limiting characteristic of the first family.

A comparison is made with the approximate transonic solution [2, 3]
near the center of the nozzle. We are indebted to G. K. Bunina for
assistance with the calculations.

§1. Sonic line. Frankl [1] gave a solution for this type of jet. The
shape of the sonic line and the velocity at the wall are derived for a
planar hole whose walls are inclined at an angle 6, = 7/2 to the x-
axis.

The formula [1] for the function ¥ is

P = — 01t + agp® + & , (1.1)
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in which 6 is the inclination of the velocity to the x-axis, T is the
square of the ratio of the velocity to the velocity of flow into a vac-
uum, and T, is the value of 7 at the sonic point.

In deriving the coefficients of (1.3) from the boundary conditions,
Frankl calculated only the first four coefficients. Formula (1.3) is used
to determine the coordinates of the sonic line and the inclination of
the velocity on it. The values of ¢ are used to determine the coordi-
nates of the sonic line via Chaplygin's equations and the formulas for
passing from the physical plane to the hodograph plane [4]. Some
simple steps give
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Formulas allowing one to sum the series of (1.2) for T = 7, have
been used in calculating ¢ and 8y/87, namely
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in which I'{at) is the gamma function, and also asymptotic formulas
for zp(r) for T =7, [1]:
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in which C, = —2.444, C; =1.2308, C, = —0.6478, and Cy = 0.23779,
andy is the ratio of the specific heats. The results for ¢ and 89/07
are as follows:
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0.8361 { O 0 0
0.8360 (.048063 —0.001091 0.0256 0.2814
0.8347 0.4200 —0.002041 0.04602 1.405
0.8309 0.2012 —0.002182 0.05207 2.031
0.8218 0.2730 —(0.,003272 0.07064 2.314
0.8123 0.3264 —0.004363 0.08445 2.300
0.7788 0.4486 —0.008727 0.11603 1.8006
0.7517 0.5208 —0.01309 0.1346 1.5249
0.7283 0.5799 —0.017453 0.1488 1.3639
0.6878 0.6611 -—0.02618 0.1706 1.1650
0.6527 0.7276 —0 0.1873 0.0387
0.6215 0.7832 —0.04363 0.2016 0.9480
0.5930 0.8313 —0 0.2137 0.8783
0.5667 0.8742 —0 0.2243 0.8222
0.5423 0.9430 —0 0.2389 0.7756
0.5194 0.9485 —0.07854 0.2427 0.7361
0.4875 0.9970 —0.09163 0.2545 0.6863
0.4580 1.0410 —0 0.2651 0.6449
0.4219 1.0942 —0 0.2771 0.5990
0.3511 1.1973 —~0 (.36 0.5211
0.2975 1.2758 —0 4.3191 0.4698
0.2143 1.4012 —0 0.3458 0.3992
0.1365 1.5272 —0 0.3710 0.3393
0.03665 1.6735 ) 0.3981 0.2797

—0.04028 1.9075 —0 0.4364 0.1955

—0.07395 2.0384 -0 0.4550 0.1455

—0.08343 2.130 —1.0167 0.4673 0.1032
0 2.256 —1.5708 0.5 0
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An M-20 computer was used to calculate the coordinates of the
sonic line, the inclination of the velocity at that line, and ¥ and
or,dy/dr for a planar hole with 8y = 11/2 (see table).

A quantity of interest is d\/dx, in which X is the velocity coeffi-
cient, at the center of the nozzle. The relations between the physical
plane and the hodograph plane [4] give
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because the series for o diverges. Simple steps give
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The asymptotic expression of (1.5) for 2(T.) is used with the
integral representation of the Riemann zeta function and the series
representation of that function {5] to give
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in which 2y, is the width of the hole. The radius of curvature of the
streamline at the point of intersection with the sonic line can be deter-
mined from

cos26 (1 - tg2 )% = 2v, dy
= d0jdz , dﬁ = V8<qy ar cos®-

§2. Supersonic part. This flow was calculated by the method of
characteristics [6] with the M-20 computer. This gave the limiting
characteristics Cj and C° of the first and second families, the line
6 =0, and ten intermediate lines. Figure 1 shows the sonic line (curve
1), C° (curve 2), Ci (cwrve 3), 6 =0 (curve 4), and the rarefaction
lines. The streamlines show the relative radii of curvature R at
the sonic point (this relative radius is the ratio of the radius of cur-
vature to the radius of the minimum cross-section for that line), as
well as the flow corresponding to that line and referred to 0.5 p,a, (at
Y = 3.864).

The flow parameters change monotonically along C°, namely M
and the modulus of the inclination of the velocity increase with y. M
and that inclination change similarly on all characteristics of the sec-

ond family that start from the nodal point and run to the sonic line up
the flow from C°. The characteristics of the second family that start
from the nodal point and run down the flow from C° do not have monoc-
tonic variation in M and the inclination (Fig. 2); M decreases from
the nodal point to the point of intersection with the C} characteristic,
but increases from the point of intersection to the axis, while theangle
increases from the cormer point to the point of intersection but there-
afrer falls to zero. In Fig. 2, 8 =(M® — 1)'/?, g =tano.

This behavior is readily explained from the conditions of com-
patibility on the characteristics. Let y(M) be the Prandil-Meyer num-
ber; then (Fig. 1) on ADN

v (M) = 8= v (My)

at A

V(M) — 8= m, or V(M) =12 v(My) +

on C
v (M) —08=0,
at D (intersection of ADN and C})
v (Mp) = Yav (My).
These relationships imply that

My <My, M, >M,

It can be shown that M decreases monotonically on part AD of
ADN, and increases monotonically on part DN. From

v (M) +0=v(My),

it follows that 6 is also not monotonic on ADN.
§3. Comparison with approximate solution. The approximate
equation for transonic flow in the planar case is [2]

— (1) O D+ Dy =0,

In deriving this it has been assumed that the speed of the gas is
close to the speed of sound, while the angle between the velocity vec-
tor and the x-axis is small. The exact solution to this equation is the
first term of Meyer's series near the center of the nozzle and takes
the form

© = Ypa 2t + Yy (v + 1) a? ay® + Yo (y - 1)% 0¥y,

in which o = dw/dx at the center. This gives us the velocity com-
ponents u and v parallel and perpendicular to the axis as

ufo* =1 +ax+ Yo (v 1) a®® + ...,
v/a,= (y + 1) alwy -+ Y (y + D2 a¥yS+-... .

These formulas allow us to calculate the shape of the sonic line,
the line, © = 0, and of C and C;. The first three are

z= —Vy (y+ 1) ay?, z= s (y 4+ 1) ay?, 6=0,

while the latter two are

g= =Yy (y+ 1) ay?, z=12 (y 4+ 1) ay*.

Figures 3 and 4 give some results from comparison of the exact
and approximate solutions. Figure 3 gives the coordinates of the sonic
line, the line 6 =0, and also C| and C”, while Fig. 4 shows6 asa
function of y. In these figures, curve 1 corresponds to the approximate
solution, while curve 2 corresponds 1o the present numerical solution.
The discrepancies are only 10-20% up to y & 2 for the coordinates of
the sonic line, the line & = 0, and also C] and C’; but the 6 for y <
= 0.9 (which corresponds to R° = 4)-and the modulus of the velocity on
the sonic line and the line 8 = 0 differ by a factor 2 (Fig. 4). The ap-
proximate formulas are therefore unsuitable for flow in nozzles in
cases of practical interest with R° =< 4; they are applicable only when
the flow near the critical section differs only slightly from one-di-
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mensional, as was assumed in deducing the approximate equation for
the potential of the transonic flow.

§4. Curvilinear transition and streamline point. Each corner can
serve as the contour of a nozzle, starting from the subsonic region. It
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is of interest to use the transonic parts to derive the supersonic part
with a corner point and with a uniform flow parallel to the axis. It is
usual in calculating the supersonic part of a nozzle with a corner point
to assume that the sonic line is straight and that the velocity on it is
parallel to the axis [7], as there is no exact solution for transonic

flow with a curvilinear transition surface. [Chen the rarefaction lines
arising from flow past the corner point are calculated. A given M is
assumed, and a characteristic with a uniform flow parallel to the axis

is taken to solve the Gurs problem and to define the supersonic part of

the nozzle with a corner point. In our case, we have located the corner

point at various points on the line ® = 0, which correspond to stream
lines with different R°. Rarefaction waves were calculated for these
various positions. Figure 5 shows the distribution of M along the axis
of the nozzle for various R* (x° is the ratio of the distance from the
corner point to the radius of the critical section, in which the corner
point lies). The value R° = 0 corresponds to flow from a planar hole
with 8y = m/2, while R° = « corresponds to flow from a planar hole
with a rectilinear sonic line. It is clear from Fig. & that the axial

t___ X.
E X :
i ! !
307 - =
‘[ |
;
s
W D
¥/ Sa— - . : §
,‘? ‘ ° /30_—.00 ! 1
/: LeR =202 ! J
T ORE07
! #R=0326 ;
xR%=( ; [
14— ‘ : i
7 !

e
&
A

0.6 -

=
="
~
[Ny

Fig. &

‘distribuiion of M and the acceleration on flow past the corner point
are only slightly dependent on the shape of the sonic line. The accel-
eration is somewhat greater with M > 2 forR* = Q.

These rarefaction waves were used to calculate nozzles with corner
points having a uniform flow parallel to the axis for My ~ 4, which
differed in shape of transition line in the transonic part and hence in
R°. Figure 6 shows the distribution of M on the wall. A nozzle with a
curvilinear sonic line has a positive pressure gradient near the comer
point (minimum in the distribution of M). The pressure gradient de-
creases as R° increases. There is no positive pressure gradient for a
nozzle with a straight sonic line.

This minimum in M is related to the nonmonotonic behavior of
M on the rarefaction waves. As the characteristic at the exit fiom the
nozzles is rectilinear, and the parameters on it are constant, all char-
acteristics of the first family are also rectilinear and have constant
parameters, so the nonmonotonic parameter variation on the rare-
faction-wave characteristics is transferred to the nozzle contour and
to all intermediate streamlines lying above the point of intersection
of the last characteristic for the waves with the C; characteristic.
This implies that a positive gradient will be absent in a nozzle with
a corner point if the corner point in the transonic region lies down=
stream from point D in Fig. 1.

Consider the flow for various R in the transonic part at the point
9 = 0. Calculations have been performed for a nozzle with a recti-

36 '] °R°=oo [
~R=202
“Lg},’fﬂ.&?s =t il ] !
R= 0326 20 |
28—
| k Vﬁ

20 r 12

[/ § 16 24 32 z

i 1
|

Fig. 6

linear sonic line at the inlet and a uniform flow parallel to the axis
at the exit with My = 4. The calculations show that here a curvilinear
transition surface causes the distribution of M near the corner point to
vary with R, and that there is a positive pressure gradient. However,
the distributions of M in the rest of the nozzle are fairly similar, in
spite of the differences in the transonic part.
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